Self-tracking citizenship

An excerpt from Chapter 5 of my new book  The Quantified Self: A Sociology of Self-Tracking.

Nafus and Sherman (2014: 1785) contend that self-tracking is an alternative data practice that is a form of soft resistance to algorithmic authority and to the harvesting of individuals’ personal data. They argue that self-tracking is nothing less than ‘a profoundly different way of knowing what data is, why it is important, who gets to interpret it [sic], and to what ends’. However the issue of gaining access to one’s data remains crucial to questions of data control and use. While a small minority of technically proficient self-trackers are able to devise their own digital technologies for self-tracking and thus exert full control over their personal information, the vast majority must rely on the commercialised products that are available and therefore lose control over where their data are stored and who is able to gain access.

For people who have chronic health conditions, for example, access to their data can be a crucial issue. A debate is continuing over the data that are collected by continuous blood glucose monitoring and whether the patients should have ready access to these data or only their doctors. As one person with diabetes contends on his blog, older self-care blood glucose-monitoring devices produce data that patients can view and act on immediately. Why should the information generated by the newer digitised continuous blood glucose monitors be available only to doctors, who review it some time later, when patients could benefit from seeing their data in real time? A similar issue arises in relation to the information that is collected on heart patients’ defibrillator implants. The data that are conveyed wirelessly to patients’ healthcare professionals cannot be easily accessed by the patients themselves. In jurisdictions such as the United States, the device developers are legally prohibited from allowing patients access to their data (see here).

There is recent evidence that the Quantified Self movement is becoming more interested in facilitating access to personal data for purposes beyond those of individuals. In a post on the Quantified Self website entitled ‘Access matters’, Gary Wolf comments that self-trackers have no legal access to their own data, which they may have collected for years. Nor is there an informal ethical consensus that supports developers in opening their archives to the people who have contributed their information. Wolf and others associated with the Quantified Self movement have begun to campaign for self-trackers to achieve greater access to the personal data that are presently sequestered in the cloud computing archives of developers. They argue for an approach that leads to the aggregation of self-tracked data in ways that will benefit other people than individual self-trackers themselves.

Some Quantified Self movement-affiliated groups have begun to experiment with ways in which self-tracking can be used for community participation and development. Members of the St Louis Quantified Self meeting group, for example, have worked on developing a context-specific app that allows people to input their moods and identify how certain spatial locations within a community affect emotional responses. They are also developing a Personal Environment Tracker that would allow St Louis citizens to monitor their own environmental impact and that of the community in which they live.

The Quantified Self Lab, the technical arm of the Quantified Self mvement, has also announced that it is becoming involved with citizen science initiatives in collaboration with the US Environmental Protection Agency (see here). It has now joined with the Robert Wood Johnson Foundation, an American philanthropic organisation focused on health issues, to work on improving people’s access to their personal data. Both groups are also collaborating with other partners on the Open Humans Network, which is aimed at facilitating the sharing of people’s details about their health and medical statuses as part of a participatory research initiative. Participants who join in this initiative are asked to upload the data that they have collected on themselves through self-tracking devices as well as any other digitised information about their bodies that they are able to offer for use in research studies. Part of the model that the Open Humans Network has adopted is that researchers agree to return to the participants themselves any new data that emerge from projects that use these participants’ information, and participants decide which of their data they allow others to access.

Beyond the Quantified Self movement, a number of initiatives have developed that incorporate the aggregation of self-tracked data with those of others, as part of projects designed to benefit both the individuals who have collected the data and the broader community. Citizen science, environmental activism, healthy cities and community development projects are examples of these types of communal self-tracking endeavours. These initiatives, sometimes referred to as ‘citizen sensing’ (Gabrys, 2014), are a form of crowdsourcing. They may involve the use of data that individuals collect on their local environs, such as air quality, traffic levels or crime rates, as well as on their own health indicators – or a combination of both. These data may be used in various ways. Sometimes they are simply part of collective projects undertaken at the behest of local agencies, but they may also be used in political efforts to challenge governmental policy and agitate for improved services or planning. The impetus may come from grassroots organisations or from governmental organisations; the latter construe it as a top-down initiative or as an encouragement towards community development.

Self-tracked data here become represented as a tool for promoting personal health and wellbeing at the same time as community and environmental development and sustainability. As these initiatives suggest, part of the ethical practice of self-tracking, at least for some practitioners, may involve the notion of contributing to a wider good as well as collecting data for one’s own purposes. Access to large data sets – rendering these data sets more ‘open’ and accessible to members of the public – becomes a mode of citizenship that is distributed between self, community and physical environment. This idea extends the entrepreneurial and responsible citizen ideal by incorporating expectations that people should not only collect their own, personal information for purposes of self-optimisation but should also contribute it to tailored, aggregated big data that will benefit many others, in a form of personal data philanthropy: self-tracking citizenship, in other words.

References

Gabrys, J. (2014) Programming environments: environmentality and citizen sensing in the smart city. Environment and Planning D: Society and Space, 32 (1), 30-48.

Nafus, D. and Sherman, J. (2014) This one does not go up to 11: the Quantified Self movement as an alternative big data practice. International Journal of Communication, 8 1785-1794.

 

 

 

 

 

Self-tracking practices as knowledge technologies

An edited excerpt from the concluding chapter of my book The Quantified Self: A Sociology of Self-Tracking.

As I have remarked in this book’s chapters, via the mainstream self-tracking devices and software that are available, certain aspects of selfhood and embodiment are selected for monitoring while a plethora of others are inevitably left out, ignored, or not even considered in the first place. Those aspects that are selected become more visible, while others are obscured or neglected through this process. The technologies themselves, including the mobile, wearable and ‘anti-wearable’ sensor-embedded objects and the software that animate them, tend to be the product of a narrow demographic of designers: white, well-paid, heterosexual men living in the Global North. In consequence, the tacit assumptions and norms that underpin the design and affordances of self-tracking technologies are shaped by these people’s decisions, preferences and values. Thus, for example, devices such as Apple Watch initially failed to include a menstrual cycle tracker as part of its built-in features (Eveleth, 2014); sexuality self-tracking apps focus on male sexual performance and competitive displays of prowess (Lupton, 2015); apps that use westernised concepts and images of health and the human body are inappropriate for Aboriginal people living in remote areas of Australia (Christie and Verran, 2014). How people from outside this demographic might engage or not with these technologies and how technologies might be better designed to acknowledge the diversity of socioeconomic advantage, cultures and sexual identities are subjects rarely pondered upon in the world of technology design …

At the same time as self-tracking practices are reductive and selective, they are also productive. They bring into being new knowledges, assemblages, subjectivities and forms of embodiment and social relations. In Chapter 2 I referred to the four types of technology identified by Foucault, which work together to produce knowledges on humans. Acts of reflexive self-monitoring involve all four of these knowledge technologies. Via prosumption, self-trackers generate data on themselves (technologies of production); they manipulate and communicate the symbols, images, discourses and ideas related to their own data and the devices that generate these data (technologies of sign systems); they are involved in strategies that are designed to assist them in participating in certain forms of conduct for specific ends (technologies of power); and all of these practices are overtly and deliberately directed at performing, presenting and improving the self (technologies of the self).

What is particularly intriguing about this expertise is that it both operates at the level of the ‘nonexpert’ (the self-tracker), where it is configured, and is inextricably interbound into the digital data economy and the forms of government regulation of the body politic. The authority of the knowledgeable expert on human life is dispersed among members of the lay public to a greater extent than ever before. However, the shared nature of this authority and expertise also undermines the power that self-trackers possess over their own information. Reflexive self-monitors are able to generate their own truth claims about trackers’ own bodies/selves, but these trackers are increasingly unable to control how these truth claims are used by other actors or what the potential ramifications for their own life chances and opportunities are once these data come under the control of others.

 

Pregnancy apps and gender stereotypes

Pregnant women and those experiencing the early years of motherhood have used online forums for many years to share experiences and seek information. Now there are hundreds of apps that have been designed for similar purposes. As part of an integrated research program looking at apps and other digital media for pregnancy and parenting, I have been researching these apps using several approaches. In a survey of 410 Australian women who were pregnant or who had given birth in the past three years, I found that almost three-quarters had used at least one pregnancy app, while half of the women who already had children reported using a parenting app (see here for an open access report on this survey and here for a journal article about it).

With Gareth Thomas from Cardiff University, I have also conducted a critical analysis of the content of pregnancy apps themselves. This involved analysing all pregnancy-related apps offered in the two major app stores, the Apple App Store and Google Play. We examined the app descriptions, looking for how the developers marketed their apps and what they offered. See here and here for articles that have been published from this analysis.

This study found that the apps designed for pregnant women represent pregnancy as a state in which women must maintain a high degree of vigilance over their own bodies and that of their foetuses. Many apps promoted this level of self-monitoring, often seeking to render the practices aesthetically-pleasing by using beautiful images of foetuses or allowing women to take ‘belfies’ (belly selfies) and share these on social media.

Among the most surprising of our findings were the large numbers of pregnancy-related games designed for entertainment. These include pregnancy pranks such as fake foetal ultrasounds to fool people into thinking someone is pregnant. We also found many games for little girls that are on the market. The encourage girls to give pregnant women ‘make-overs’ so that they will ‘feel more confident’ and look beautiful, ready for the birth. Some even let players perform a caesarean section on the characters, who remain glamorous and serene even on the operating table. The types of messages about pregnancy and childbirth that are promoted to their young female users are troubling.

Other apps are directed at men who are becoming fathers, although there were far fewer of these apps compared with those for pregnant women. We noticed from our analysis of these apps that even though quite a few of them are marketed as being written ‘by men, for men’, they typically portray the father as a bumbling fool, who requires simplistic or jokey information to keep him interested in the impending birth of his child. Men are advised not to stare at attractive women and to constantly reassure their partners that they find them attractive. Foetuses are compared to beer bottles so that men can learn about foetal development in supposedly unthreatening ways.

Our overall finding, therefore, is the highly stereotypical gendered representations of pregnant women and expectant fathers in these apps. Women are encouraged to use apps to achieve the ideal of the self-monitoring ‘good mother’, closely tracking their bodies because they have their foetus’s best interests at heart in every action they take. They are expected to celebrate their pregnancy and changing bodies – there is little room for ambivalence. Their male partners, on the other hand, are assumed to be uninterested and to require nudging to act in a supportive role to their partners.  And little girls are encouraged to accept and perpetuate the ‘yummy mummy’ stereotype in playing the pregnancy games that are marketed to them, and to view caesarean sections as a quick and easy way to give birth.

Living Digital Data research program

People’s encounters and entanglements with the personal digital data that they generate is a new and compelling area of research interest in this age of the ascendancy of digital data. Members of the public are now called upon to engage with a variety of forms of information about themselves and to confront the complexities of how these details are used by others. Personal digital data assemblages are configured as human bodies, digital devices, code, data, time and space come together.

 

Personal digital data assemblages smartart

Personal digital data assemblages

 

Over the past few years I have been researching the social aspects of personal digital data: how people understand and conceptualise these data, how they use their data, what people know about where their personal data go and how their data are used by second and third parties.I have analysed the metaphors that are used to describe digital data, the politics of digital data, the types of data that are collected by apps and self-tracking devices, how people use these software and devices and how personal digital data are materialised, or rendered into visualisations or three-dimensional objects. I have sought to theorise the ontology of personal digital data, drawing particularly sociomaterialism, feminist technoscience, cultural geography and sensory studies. (See My Recent Publications for further details.)

I am bringing these research questions together under a program that I have named ‘Living Digital Data’. This title builds on my conceptualisation of digital data as ‘lively’ in a number of ways.

 

 

Lively data smartart

Lively Data

 

 

The first element of the vitality of digital data relates to the ways in which they are generated and what happens thereafter. The personal digital information that is constantly generated contributes to data assemblages that are heterogeneous and dynamic, their character changing as more data points are added and others removed. Digital data may be described as having their own social lives as they circulate in the digital data economy and are purposed and repurposed. Second, digital data constitute forms of knowledge about human (and nonhuman) life itself and hence possess another type of vitality. Third, personal digital data have impacts on people’s lives, shaping the decisions and actions that people make and those that other people make about them.  The profiles constructed from these data can influence decisions about the opportunities people have to travel, access employment, credit or insurance, the people that they meet on online dating sites, the knowledges that they hold about themselves and their bodies and those of intimate others. Finally, personal digital data are forms of livelihoods, contributing to the commodification and capitalisation of information. Indeed, they may be described as a form of biocapital, which possesses many forms of value beyond the personal: for research, commercial, security, managerial and governmental agencies.

This approach recognises the entanglements of personal digital data assemblages with human action. Not only are personal digital data assemblages partly comprised of information about human action, but their materialisations are also the products of human action, and these materialisations can influence future human action.

Rather than refer to data literacy or data management skills, I take up the term ‘data sense’ to encapsulate a broader meaning of ‘data sense’ that includes human senses (sight, sound, touch, smell and taste) and how these are part of people’s responses to data and also acknowledges the role played by digital sensors in the act of ‘sense-making’; or coming to terms with digital data.

 

Data sense smartart

Data Sense

 

My 2015 publications

Here are my publications that came out in 2015.

Book

  • Lupton, D. (2015) Digital Sociology. London: Routledge.

Book chapters

  • Lupton, D. (2015) Digital sociology. In Germov, J. and Poole, M. (eds), Public Sociology: An Introduction to Australian Society, 3rd St Leonards: Allen & Unwin.
  • Lupton, D. (2015) Donna Haraway: the digital cyborg assemblage and the new digital health technologies. In Collyer, F. (ed), The Palgrave Handbook of Social Theory in Health, Illness and Medicine. Houndmills: Palgrave Macmillan.

Peer-reviewed journal articles

Report

  • Lupton, D. and Pedersen, S. (2015) ‘What is Happening with Your Body and Your Baby’: Australian Women’s Use of Pregnancy and Parenting Apps. Available here.

Digitising female fertility and reproduction

Over the past few months, I have been working on writing about the findings of several research projects addressing the topic of digital technologies directed at female fertility and reproduction. These projects involve:

1) a critical content analysis of fertility and reproduction-related software and devices (especially apps);

2) an online survey of 410 Australian women’s use of pregnancy and parenting apps; and

3) focus groups and interviews with Australian and British women about their use of these technologies (these are still in progress).

Several outcomes have now been published drawing on these findings. They include a report (with Sarah Pedersen from Robert Gordon University, Aberdeen) outlining the findings of the online survey (this can be accessed here), an article on the gamification and ludification of pregnancy in apps (with Gareth Thomas from Cardiff University, available here) and a book chapter on the concept of the reproductive citizen and the range of digital technologies that are directed at helping women to monitor and regulate their fertility and reproduction (available here). Edit: two other articles have now been published: one based on the survey findings (here), and another on the pregnancy app study (here).

Some of the key findings are:

  • The survey showed that pregnancy and parenting apps were very popular among the survey respondents – three-quarters of the respondents (who were either pregnant or who had a baby in the past three years at the time of the survey) said that they had used at least one pregnancy app, while almost half had used at least one parenting app.
  • Googling information about pregnancy is very common among pregnant women, for whom too much information about pregnancy appears never to be enough (this finding emerged in the focus groups). They tend to invest their trust in the first few search findings that come up on their search engine, reasoning that because this is evidence of popularity, then these websites must be credible.
  • Despite the popularity of pregnancy and parenting apps, few women are contemplating the validity of the information presented in them, or demonstrated concern about the data security and privacy of the personal information that the apps may collect (this was evident in both the survey and the focus groups).
  • This genre of software is intensifying an already fervid atmosphere of self-surveillance, attempts at management and control and self-responsibility in which female fertility and reproduction are experienced and performed.
  • Stereotypical concepts of idealised female fertile and pregnant bodies are reproduced in apps and other software. They use highly aestheticised images and the promise of rational calculation and monitoring to seek to contain and control women’s fertility and reproduction.
  • Women in their fertile years – and particularly those contemplating pregnancy or already pregnant – are part of a highly commodified demographic. The information that they generate from their online practices possess a new form of value, biovalue, as part of the bioeconomy of personal health and medical data.

Self-tracking, social fitness and biovalue

I have just completed a chapter for the forthcoming volume The Sage Handbook of Social Media. The chapter addresses the intersections of self-tracking for health and medical purposes with social media platforms and rationales. As I argue in the chapter, the expanded array of digitised devices that are available for self-tracking and the capacity of many of these technologies to interact with social media platforms have encouraged self-trackers to share the details that they collect about themselves with others. I begin with a description of self-tracking and the sociomaterial theoretical foundations on which the chapter rests. This is followed with an overview of the technologies that are available for health and medical self-tracking and for self-trackers to share their data. The discussion section of the chapter presents an analysis of the new forms of value that personal health and medical data have attracted in the digital data economy, and the moral and political repercussions of encouraging people to participate as socially fit citizens. The chapter ends with outlining key questions for further research.

The full pre-print of the chapter is available here.

Who owns your personal health and medical data?

09/01/15 -- A moment during day 1 of the 2-day international Healthcare and Social Media Summit in Brisbane, Australia on September 1, 2015. Mayo Clinic partnered with the Australian Private Hospitals Association (APHA), a Mayo Clinic Social Media Health Network member to bring this first of it's kind summit to Queensland's Brisbane Convention & Exhibition Centre. (Photo by Jason Pratt / Mayo Clinic)

Presenting my talk at the Mayo Clinic Social Media and Healthcare Summit (Photo by Jason Pratt / Mayo Clinic)

Tomorrow I am speaking on a panel at the Mayo Clinic Healthcare and Social Media Summit on the topic of ‘Who owns your big data?’. I am the only academic among the panel members, who comprise of a former president of the Australian Medical Association, the CEO of the Consumers Health Forum, the Executive Director of a private hospital organisation and the Chief Executive of the Medical Technology Association of Australia. The Summit itself is directed at healthcare providers, seeking to demonstrate how they may use social media to publicise their organisations and promote health among their clients.

As a sociologist, my perspective on the use of social media in healthcare is inevitably directed at troubling the taken-for-granted assumptions that underpin the jargon of ‘disruption’, ‘catalysing’, ‘leveraging’ and ‘acceleration’ that tend to recur in digital health discourses and practices. When I discuss the big data phenomenon, I evoke the ‘13 Ps of big data‘ which recognise their social and cultural assumptions and uses.

When I speak at the Summit, I will note that the first issue to consider is for whom and by whom personal health and medical data are collected. Who decides whether personal digital data should be generated and collected? Who has control over these decisions? What are the power relations and differentials that are involved? This often very intimate information is generated in many different ways – via routine online transactions (e.g. Googling medical symptoms, purchasing products on websites) or more deliberately as part of people’s contributions to social media platforms (such as PatientsLikeMe or Facebook patient support pages) or as part of self-tracking or patient self-care endeavours or workplace wellness programs. The extent to which the generation of such information is voluntary, pushed, coerced or exploited, or indeed, even covert, conducted without the individual’s knowledge or consent, varies in each case. Many self-trackers collect biometric data on themselves for their private purposes. In contrast, patients who are sent home with self-care regimes may do so reluctantly. In some situations, very little choice is offered people: such as school students who are told to wearing self-tracking devices during physical education lessons or employees who work in a culture in which monitoring their health and fitness is expected of them or who may be confronted with financial penalties if they refuse.

Then we need to think about what happens to personal digital data once they are generated. Jotting down details of one’s health in a paper journal or sharing information with a doctor that is maintained in a folder in a filing cabinet in the doctor’s surgery can be kept private and secure. In this era of using digital tools to generate and archive such information, this privacy and security can no longer be guaranteed. Once any kind of personal data are collected and transmitted to the computing cloud, the person who generated the data loses control of it. These details become big data, part of the digital data economy and available to any number of second or third parties for repurposing: data mining companies, marketers, health insurance, healthcare and medical device companies, hackers, researchers, the internet empires themselves and even national security agencies, as Edward Snowden’s revelations demonstrated.

Even the large institutions that are trusted by patients for offering reliable and credible health and medical information online (such as the Mayo Clinic itself, which ranks among the top most popular health websites with 30 million unique estimated monthly visitors) may inadvertently supply personal details of those who use their websites to third parties. One recent study found that nine out of ten visits to health or medical websites result in data being leaked to third parties, including companies such as Google and Facebook, online advertisers and data brokers because the websites use third party analytic tools that automatically send information to the developers about what pages people are visiting. This information can then be used to construct risk profiles on users that may shut them out of insurance, credit or job opportunities. Data security breaches are common in healthcare organisations, and cyber criminals are very interested in stealing personal medical details from such organisations’ archives. This information is valuable as it can be sold for profit or used to create fake IDs to purchase medical equipment or drugs or fraudulent health insurance claims.

In short, the answer to the question ‘Who owns your personal health and medical data?’ is generally no longer individuals themselves.

My research and that of others who are investigating people’s responses to big data and the scandals that have erupted around data security and privacy are finding that concepts of privacy and notions of data ownership are beginning to change in response. People are becoming aware of how their personal data may be accessed, legally or illegally, by a plethora of actors and agencies and exploited for commercial profit. Major digital entrepreneurs, such as Apple CEO Tim Cook, are in turn responding to the public’s concern about the privacy and security of their personal information. Healthcare organisations and medical providers need to recognise these concerns and manage their data collection initiatives ethically, openly and responsibly.

Edited book ‘Beyond Techno-Utopia: Critical Approaches to Digital Health Technologies’ now out

Last year I guest-edited a special issue of the open-access sociology journal Societies that focused on critical perspectives on digital health technologies. The collection includes my editorial and another article I contributed (on the topic of apps as sociocultural artefacts), as well as eight other articles from scholars based in the UK, Australia, Finland, the USA and Sweden. Individual contributions may be accessed on the journal’s website here, and now the whole collection is available as an open access book PDF (or can be purchased as a hard copy), both available here.

The following outline of the special issue/book’s contents, an edited excerpt taken from my editorial, provides an overview of its contents.

The articles in this special issue build on a well-established literature in sociology, science and technology studies and media and cultural studies that has addressed the use of digital technologies in health and medicine… Several of these topics are taken up in the articles published in this special issue. All the authors use social and cultural theory to provide insights into the tacit assumptions, cultural meanings and experiences of digital health technologies. The articles cover a range of digital health technologies: devices used for the self-tracking of body metrics (Ruckenstein; Till; Rich and Miah; Lupton); social media platforms for discussing patients’ experiences of chronic disease (Sosnowy) and experiences of pregnancy and early motherhood (Johnson); health and medical apps (Till; Johnson; Christie and Verran; Lupton); telehealthcare systems (Hendy, Chrysanthaki and Barlow); and a digital public health surveillance system (Cakici and Sanches). While some articles focus on globalised digital media (Cakici and Sanches; Rich and Miah; Till; Lupton), others engage more specifically with a range of sociocultural groups, contexts and locations. These include Aboriginal people living in a remote region of Australia (Christie and Verran) and Australian mothers in urban Sydney (Johnson) as well as research participants in Helsinki, Finland (Ruckenstein), the United States (Sosnowy) and England (Hendy, Chrysanthaki and Barlow).

Understandings and experiences of selfhood and embodiment as they are generated and experienced via digital health devices are central preoccupations in the articles by Ruckenstein, Rich and Miah, Till, Lupton, Sosnowy and Johnson. Ruckenstein’s study of self-trackers found that they often conceptualised their bodies and their physical activities in different ways when these were being monitored and rendered into digital data. The data that were generated by these devices proved to be motivational and to give value to some activities (like housework) that otherwise lacked value or new meaning to functions such as sleep (which when digitised and quantified became viewed as a competence). Ruckenstein found that the digital data tended to be invested with greater validity than were other indicators of bodily wellbeing or activity, such as the individual’s physical sensations.

All of the above authors comment on the ways in which digital health devices such as wearable self-tracking devices, social media platforms, apps and patient support websites work as disciplinary tools. They invite users to conform to the ideals of healthism (privileging good health above other priorities) and the responsible self-management and self-monitoring of one’s health and body, including avoiding exposure to risk. Rich and Miah use the concept of “public pedagogy” to describe the socio-political dimensions of digital health technologies as they are employed to educate people about their bodies and promote self-management. As Johnson notes, for women who are pregnant or have the care of young children, this sphere of responsibility is extended to the bodies of others: the foetus or child. And as Till’s article emphasises, when employees are “encouraged” to engage in self-tracking, the ethos of responsibility extends from personal objectives to those of employers.

Ruckenstein, Till and Sosnowy also highlight the digital labour involved for people who engage with social media or self-tracking apps as part of their personal health or fitness practices. Sosnowy’s interviews with women with multiple sclerosis who blog about their condition emphasise the work involved in such engagement as an “active patient”. Till’s analysis of digital exercise self-tracking points to the appropriations of people’s labour by other actors for commercial reasons.

The article by Hendy, Chrysanthaki and Barlow moves in a somewhat different direction. Using ethnographic cases studies, they look at the managerial issues involved with implementing telehealthcare in English social and health care organisations. Their focus, therefore, is not on the recipients or targets of digital health technologies but rather those who are attempting to institute programs as part of their work as managers. These authors’ contribution highlights the messiness of introducing new systems and practices into large organisations, and the resistances that may emerge on the part of both workers and the targets of telehealthcare programs. Cakici and Sanches’ article also takes an organisational perspective in addressing a European Commission co-funded project directed at syndromic surveillance, or the use of secondary sources to detect outbreaks and patterns in diseases and medical conditions. Digital data are increasingly being use as part of syndromic surveillance: Google Flu Trends is one such example. Cakici and Sanches’ analysis highlights the role played by human decision-making and the affordances of digital technologies in structuring what kinds of data are retrieved for syndromic surveillance and how they are interpreted.

While there are as yet few detailed ethnographic accounts of how people are implementing, adopting or resisting contemporary digital health technologies, there are even fewer that investigate the use of these technologies by members of cultural groups outside the global North. The article by Christie and Verran takes a much-needed diversion from perspectives on white, privileged groups to Aboriginal people living in a remote part of Australia. As they argue, the concepts on health, illness and the body that are held by this cultural group differ radically from the tacit assumptions that are invested in mainstream health and medical apps. Any app that is developed to assist in health literacy that is targeted at this group must incorporate culturally-appropriate modes of communication: positioning people within their cultural and kinship networks of sociality, for example, rather than representing them as atomised actors.

The articles collected here in this special issue have gone some way in offering a critical response to digital health technologies, but they represent only a beginning. Many more compelling topics remain to be investigated. These include research into the ways in which lay people and healthcare professionals are using (or resisting the use) of social media, apps and self-monitoring devices for medicine and health-related purposes; the implications for medical power and the doctor-patient relationship; how citizen science and citizen sensing are operating in the public health domain; the development of new digital health technologies; the implications of big data and data harvesting in medicine and healthcare; the spreading out of health-related self-tracking practices into many social domains; the unintended consequences and ethical aspects of digital technology use and their implications for social justice; and data security and privacy issues.

Digitised children’s bodies

This is an excerpt from the pre-print version of a chapter I have written on the topic of ‘digital bodies’. The full pre-print can be accessed here.

The sociomaterialist perspective has been taken up by several scholars writing about children’s bodies, particularly within cultural geography, but also by some sociologists and anthropologists (Prout, 1996; Horton and Kraftl, 2006a, 2006b; Lee, 2008; Woodyer, 2008). Researchers using a sociomaterialist approach have conducted studies on, for example, children’s use of asthma medication (Prout, 1996), the surveillant technologies that have developed around controlling children’s body weight in schools (Rich et al., 2011), children’s sleep and the objects with which they interact (Lee, 2008), the interrelationship of objects with pedagogy and classroom management of students’ bodies (Mulcahy, 2012) and sociomaterial practices in classrooms that lead to the inclusion or exclusion of children with disabilities (Söderström, 2014). Outside sociomaterialist studies, young children’s interactions with digital technologies have attracted extensive attention from social researchers, particularly in relation to topics such as the potential for cyber-bullying, online paedophilia and for children to become unfit and overweight due to spending too much time in front of screens (Holloway et al., 2013). However few researchers thus far have directed their attention to the types of digital technologies that visually represent children’s bodies or render their body functions, activities and behaviours into digital data; or, in other words, how children’s bodies become digital data assemblages.

From the embryonic stage of development onwards, children’s bodies are now routinely monitored and portrayed using digital technologies. A plethora of websites provide images of every stage of embryonic and foetal development, from fertilisation to birth, using a combination of digital images taken from embryo and foetus specimens and digital imaging software  (Lupton, 2013). 3/4D ultrasounds have become commodified, used for ‘social’ or ‘bonding’ purposes. Many companies offering 3/D ultrasounds now come to people’s homes, allowing expectant parents to invite family and friends and turn a viewing of the foetus into a party event. This sometimes involves a ‘gender reveal’ moment, in which the sonographer demonstrates to all participants, including the parents, the sex of the foetus . Some companies offer the service of using 3D ultrasound scan files to create life-sized printed foetus replica models for parents.

The posting to social media sites such as Facebook, Twitter, Instagram and YouTube of the foetus ultrasound image has become a rite of passage for many new parents and often a way of announcing the pregnancy. Using widgets such as ‘Baby Gaga’, expectant parents can upload regular status updates to their social media feeds automatically that provide news on the foetus’s development. While a woman is pregnant, she can use a range of digital devices to monitor her foetus. Hundreds of pregnancy apps are currently on the market, including not only those that provide information but others that invite users to upload personal information about their bodies and the development of their foetus. Some apps offer a personalised foetal development overview or provide the opportunity for the woman to record the size of her pregnant abdomen week by week, eventually creating a time-lapse video. Other apps involve women tracking foetal movements or heart beat. Bella Beat, for example, is a smartphone attachment and app that allows the pregnant women to hear and record the foetal heart beat whenever she likes and to upload the audio file to her social media accounts.

YouTube has become a predominant medium for the representation of the unborn entity in the form of ultrasound images and of the moment of birth. Almost 100,000 videos showing live childbirth, including both vaginal and Caesarean births, are available for viewing on that site, allowing the entry into the world of these infants to be viewed by thousands and, in the case of some popular videos, even millions of viewers. Some women even choose to live-stream the birth so that audiences can watch the delivery in real time. Following the birth, there are similar opportunities for proud parents to share images of their infant online on social media platforms. In addition to these are the growing number of devices on the market for parents to monitor the health, development and wellbeing of their infants and young children. Apps are available to monitor such aspects as infants’ feeding and sleeping patterns, their weight and height and their development and achievements towards milestones. Sensor-embedded baby clothing, wrist or ankle bands and toys can be purchased that monitor infants’ heart rate, body temperature and breathing, producing data that are transmitted to the parents’ devices. Smartphones can be turned into baby monitors with the use of apps that record the sound levels of the infant.

As children grow, their geolocation, educational progress and physical fitness can be tracked by their parents using apps, other software and wearable devices. As children themselves begin to use digital technologies for their own purposes, they start to configure their own digital assemblages that represent and track their bodies. With the advent of touchscreen mobile devices such as smartphones and tablet computers, even very young children are now able to use social media sites and the thousands of apps that have been designed especially for their use (Holloway et al., 2013). Some such technologies encourage young children to learn about the anatomy of human bodies or about nutrition, exercise and physical fitness, calculate their body mass index, collect information about their bodies or represent their bodies in certain ways (such as manipulating photographic images of themselves). These technologies typically employ gamification strategies to provide interest and motivation for use. Some involve combining competition or games with self-tracking using wearable devices. One example is the Leapfrog Leapband, a digital wristband connected to an app which encourages children to be physically active in return for providing them with the opportunity to care for virtual pets. Another is the Sqord interactive online platform with associated digital wristband and app. Children who sign up can make an avatar of themselves and use the wristband to track their physical activity. Users compete with other users by gaining points for moving their bodies as often and as fast as possible.

In the formal educational system there are still more opportunities for children’s bodies to be monitored measured and evaluated and rendered into digitised assemblages. Programmable ‘smart schools’ are becoming viewed as part of the ‘smart city’, an urban environment in which sensors that can watch and collect digital data on citizens are ubiquitous (Williamson, 2014). The monitoring of children’s educational progress and outcomes using software is now routinely undertaken in many schools, as are their movements around the school. In countries such as the USA and the UK, the majority of schools have CCTV cameras that track students, and many use biometric tracking technologies such as RFID chips in badges or school uniforms and fingerprints to identify children and monitor their movements and their purchases at school canteens (Taylor, 2013; Selwyn, 2014). A growing number of schools are beginning to use wearable devices, apps and other software for health and physical education lessons, such as coaching apps that record children’s sporting performances and digital heart rate monitors that track their physical exertions (Lupton, 2015).

We can see in the use of digital technologies to monitor and represent the bodies of children a range of forms of embodiment. Digitised data assemblages of children’s bodies are generated from before birth via a combination of devices that seek to achieve medical- or health-related or social and affective objectives. These assemblages may move between different domains: when, for example, a digitised ultrasound image that was generated for medical purposes becomes repurposed by expectant parents as a social media artefact, a way of announcing the pregnancy, establishing their foetus as new person and establishing its social relationships. Parents’ digital devices, and later those of educational institutions and those of children themselves when they begin to use digital devices, potentially become personalised repositories for a vast amount of unique digital assemblages on the individual child, from images of them to descriptions of their growth, development, mental and physical health and wellbeing, movements in space, achievements and learning outcomes. These data assemblages, containing as they do granular details about children, offer unprecedented potential to configure knowledges about individual children and also large groups of children (as represented in aggregated big data sets).

References

Holloway D, Green L and Livingstone S. (2013) Zero to Eight: Young Children and Their Internet Use. London: LSE London, EU Kids Online.

Horton J and Kraftl P. (2006a) Not just growing up, but going on: Materials, spacings, bodies, situations. Children’s Geographies 4(3): 259-276.

Horton J and Kraftl P. (2006b) What else? some more ways of thinking and doing ‘Children’s Geographies’. Children’s Geographies 4(1): 69-95.

Lee N. (2008) Awake, asleep, adult, child: An a-humanist account of persons. Body & Society 14(4): 57-74.

Lupton D. (2013) The Social Worlds of the Unborn, Houndmills: Palgrave Macmillan.

Lupton D. (2015) Data assemblages, sentient schools and digitised health and physical education (response to Gard). Sport, Education and Society 20(1): 122-132.

Mulcahy D. (2012) Affective assemblages: body matters in the pedagogic practices of contemporary school classrooms. Pedagogy, culture and society 20(1): 9-27.

Prout A. (1996) Actor-network theory, technology and medical sociology: an illustrative analysis of the metered dose inhaler. Sociology of Health and Illness 18(2): 198-219.

Rich E, Evans J and De Pian L. (2011) Children’s bodies, surveillance and the obesity crisis. In: Rich E, Monaghan LF and Aphramor L (eds) Debating Obesity: Critical Perspectives. Houndsmills: Palgrave Macmillan, 139-163.

Selwyn N. (2014) Data entry: towards the critical study of digital data and education. Learning, Media and Technology: 1-19.

Söderström S. (2014) Socio-material practices in classrooms that lead to the social participation or social isolation of disabled pupils. Scandinavian Journal of Disability Research online first.

Taylor E. (2013) Surveillance Schools: Security, Discipline and Control in Contemporary Education, Houndmills: Palgrave Macmillan.

Williamson B. (2014) Smart schools in sentient cities. dmlcentral.

Woodyer T. (2008) The body as research tool: embodied practice and children’s geographies. Children’s Geographies 6(4): 349-362.